【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄

問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
チャプター:

0:00 オープニング
0:04 1(問題1)下準備
0:46 具体例(飛ばしてもOK)
3:21 1(問題1)の(1)(2)
6:36 1(問題1)の(3)
7:36 2(問題2)下準備
9:48 2(問題2)の(1)(2)

単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
投稿日:2024.11.27

<関連動画>

一次不等式「定数a入り」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$


次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$

(2)$|ax+3| \lt 5$


次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
この動画を見る 

【中学数学】平方根・ルートの計算演習~乗法公式3~ 2-9.5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})$

2⃣
$(5\sqrt{5}-2\sqrt{7})(5\sqrt{5}+2\sqrt{7})$

3⃣
$(\sqrt{3}+4)(\sqrt{3}-4)$
この動画を見る 

自治医大 関数の最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ

出典:自治医科大学 過去問
この動画を見る 

【わかりやすく】集合の要素の個数を求める②(高校数学A/場合の数)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
全体集合$U$の部分集合$A,B$において、
$n(U)=100,$ $n(A)=34,$ $n(B)=40,$ $n(A \cap B)=15$であるとき、次の個数を求めよ。
(1)$n(A \cup B)$

(2)$n\overline{ (A\cup B) }$

(3)$n(\bar{ A } \cap \bar{ B })$
この動画を見る 

(x-y)⁵+(y-z)⁵+(z-x)⁵を因数分解せよ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-y)^5+(y-z)^5+(z-x)^5$を因数分解せよ.
この動画を見る 
PAGE TOP