【概要欄必読】大学入試問題#172 東京都市大学 定積分 - 質問解決D.B.(データベース)

【概要欄必読】大学入試問題#172 東京都市大学 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}(x+4x^3)\sqrt{ 1+4x^2 }\ dx$

出典:東京都市大学 入試問題
チャプター:

00:30~ 1つ目の解答
05:00~ 別解
07:37~ 解答のみ掲載 10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}(x+4x^3)\sqrt{ 1+4x^2 }\ dx$

出典:東京都市大学 入試問題
投稿日:2022.04.17

<関連動画>

大学入試問題#150 京都大学(1991) 積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ

(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ

出典:1991年京都大学 入試問題
この動画を見る 

大学入試問題#212 滋賀県立大学(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#滋賀県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}\sqrt{ 1-\sqrt{ 1-x^2 } }\ dx$を計算せよ

出典:2017年滋賀県立大学 入試問題
この動画を見る 

【高校数学】富山大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分86日目~47都道府県制覇への道~【㉙富山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【富山大学 2023】
(1) $\displaystyle t=tan\frac{x}{2} (-π<x<π)$とおく。
この時、$\displaystyle sinx=\frac{2t}{1+t^2}, cosx=\frac{1-t^2}{1+t^2}, \frac{dx}{dt}=\frac{2}{1+t^2}$であることを示せ。
(2) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{dx}{1+sinx+cosx}$を求めよ。
(3) 2つの定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx, \int_0^{\frac{π}{2}}\frac{1+2cosx}{1+sinx+cosx}dx$が等しいことを示せ。
(4) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx$を求めよ。
(5) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{sinx}{1+sinx+cosx}dx$を求めよ。
この動画を見る 

2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$

出典:2019年東京大学入試問題
この動画を見る 

福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aは$0 \lt a \leqq \frac{\pi}{4}$を満たす実数とし、
$f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)$
とする。このとき、次の問いに答えよ。
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。
(*)  $\int_0^1f(x)dx=1$
(2)$0 \leqq b \lt c \leqq 1$を満たす実数b,cについて、不等式
$f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)$
が成り立つことを示せ。
(3)次の試行を考える。\\
[試行]n個の数$1,2,\ldots\ldots,n$を出目とする、あるルーレットをk回まわす。
この試行において、各$i=1,2,\ldots\ldots,n$についてiが出た回数を$S_{n,k,i}$とし、

(**)$\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx$
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。
(4)(3)の[試行]において出た数の平均値を$A_{n,k}$とし、$A_n=\lim_{k \to \infty}A_{n,k}$とする。
(**)が成り立つとき、極限$\lim_{n \to \infty}\frac{A_n}{n}$をaを用いて表せ。

2022東京工業大学理系過去問
この動画を見る 
PAGE TOP