【高校数学】 数Ⅱ-100 三角関数を含む方程式・不等式② - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-100 三角関数を含む方程式・不等式②

問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。

①$2\sin \theta \leqq -\sqrt{ 3 }$

②$2\cos\theta-\sqrt{ 2 } \gt 0$

③$\tan \theta +\sqrt{ 3 } \lt 0$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。

①$2\sin \theta \leqq -\sqrt{ 3 }$

②$2\cos\theta-\sqrt{ 2 } \gt 0$

③$\tan \theta +\sqrt{ 3 } \lt 0$
投稿日:2015.08.17

<関連動画>

数Ⅲ頻出問題!確実に取れるようになっておこう!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle$ABCは条件$\angle B$=2,$\angle A,BC$=1を満たす三角形のうちで
面積が最大のものであるとする。
このとき、$cos\angle B$を求めよ。

京都大入試過去問
この動画を見る 

【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
この動画を見る 

【高校数学】 数Ⅱ-113 加法定理の応用③・半角の公式編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sin^2 \displaystyle \frac{\alpha}{2}=$

②$\cos ^2 \displaystyle \frac{\alpha}{2}=$

③$\tan ^2 \displaystyle \frac{\alpha}{2}=$

◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。

④$\sin \displaystyle \frac{\alpha}{2}=$

⑤$\cos \displaystyle \frac{\alpha}{2}=$

⑥$\tan \displaystyle \frac{\alpha}{2}=$
この動画を見る 

【高校数学】 数Ⅱ-119 三角関数の合成②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \lt 2π$のとき、次の方程式を解こう。

①$\sqrt{ 3 } \sin x-\cos x=\sqrt{ 3 } $

②$2(\sin x + \cos x) -\sqrt{ 6 }$
この動画を見る 

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

アイキャッチ画像
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る 
PAGE TOP