問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$
②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$
③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$
②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$
③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$
②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$
③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$
②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$
③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
投稿日:2015.08.19