大学入試問題#127 関西大学(1991) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#127 関西大学(1991) 整数問題

問題文全文(内容文):
$l,m,n$:正の整数
$l^2mn=64$を満たす組($l,m,n$)の個数を求めよ。

出典:1991年関西大学 入試問題
チャプター:

05:18~解答のみ掲載

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$l,m,n$:正の整数
$l^2mn=64$を満たす組($l,m,n$)の個数を求めよ。

出典:1991年関西大学 入試問題
投稿日:2022.02.26

<関連動画>

【高校数学】合同式の問題はこうやって解け!【受験】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$n$を$5$で割った余りが$4$のとき、$n^3-4n^2-4n-1$を$5$で割った余りを求めよ
この動画を見る 

合同式 7の倍数でない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+2n-2$は$7$の倍数でないことを示せ.
この動画を見る 

香川大 整数問題 合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6n^5-15n^4+10n^3-n$
$30$の倍数であることを示せ

出典:香川大学 過去問
この動画を見る 

高校の宿題をアレンジしてみたその2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
5Nを7で割ると3余り,6Nを11で割ると4余るようなNで3桁で最小のものを求めよ.
この動画を見る 

福田のおもしろ数学327〜自然数の集合が和の等しい2つの集合に分割できる条件

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\mathit{X}_n ={1, 2, 3, \cdots ,n}$とする。この$\mathit{X}_n$を合計が等しい2つの集合に分割できるような自然数$n$の値をすべて求めよ。
この動画を見る 
PAGE TOP