【高校数学】 数B-9 ベクトルの成分② - 質問解決D.B.(データベース)

【高校数学】 数B-9 ベクトルの成分②

問題文全文(内容文):
①$\overrightarrow{ a }=(2,1).\overrightarrow{ b }=(-2,3)$であるとき、$3\overrightarrow{ a }-\overrightarrow{ b }$を成分で表そう。

②$\overrightarrow{ a }=(-1,1).\overrightarrow{ b }=(1-3)$とするとき、$\overrightarrow{ p }=(-5,3)$を$\overrightarrow{ a },\overrightarrow{ b }$を用いて表そう。

③$\overrightarrow{ a }=(1,x).\overrightarrow{ b }=(x,x+6)$が平行になるように、xの値を定めよう。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ a }=(2,1).\overrightarrow{ b }=(-2,3)$であるとき、$3\overrightarrow{ a }-\overrightarrow{ b }$を成分で表そう。

②$\overrightarrow{ a }=(-1,1).\overrightarrow{ b }=(1-3)$とするとき、$\overrightarrow{ p }=(-5,3)$を$\overrightarrow{ a },\overrightarrow{ b }$を用いて表そう。

③$\overrightarrow{ a }=(1,x).\overrightarrow{ b }=(x,x+6)$が平行になるように、xの値を定めよう。
投稿日:2015.11.26

<関連動画>

数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。

(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
 (a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
 (b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$

(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
 $\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
この動画を見る 

【数B】ベクトル:2021年高3第1回数台全国模試 (文系)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
この動画を見る 

【高校数学】 数B-18 ベクトルの内積⑦

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ AB }=(a,b),\overrightarrow{ AC }=(c,d)$とすると、△ABCの面積は
△ABC=①____________=②________

◎次の三角形ABCの面積を求めよう。

③$| \vec{ AB } |=6,| \vec{ AC } |=4,\overrightarrow{ AB }・\overrightarrow{ AC }=16$

④$A(2.8)、B(0,-2)、C(6.4)$
この動画を見る 

【数学B/平面ベクトル】内積を求める(大きさの式の変形方法)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$|\vec{ a }|=2\sqrt{ 5 },|\vec{ b }|=\sqrt{ 5 },$  $|\vec{ a }+2\vec{ b }|=2\sqrt{ 5 }$のとき、ベクトル$\vec{ a },\vec{ b }$のなす角$\theta$を求めよ。
この動画を見る 
PAGE TOP