問題文全文(内容文):
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$
kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$
kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
チャプター:
0:00 オープニング
0:04 1問目の解説
8:24 2問目の解説
15:25 3問目の解説
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$
kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
次の2次方程式を解け。
(1)$3(x+1)^2-2(x+1)-1=0$
(2)$2(x-1)^2-4(x-1)+3=0$
(3)$x^2-\sqrt{2} x+\sqrt{2} -1=0$
(4)$x^2-2x+9+2\sqrt{15}=0$
kは定数とする。次の方程式の解の種類を判別せよ。
(1)$kx^2-3x+1=0$
(2)$(k^2-1) x^2+2(k-1)+2=0$
投稿日:2025.01.26