【数C】【複素数平面】複素数と図形8 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形8 ※問題文は概要欄

問題文全文(内容文):
複素数平面上の2点A,Bを表す複素数をそれぞれα=12i,β=3+2iとするとき
線分ABを1辺とする正三角形の他の頂点Cを表す複素数γを求めよ。
チャプター:

0:00 オープニング
0:04 解説→答案作成まで一気に!
4:26 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の2点A,Bを表す複素数をそれぞれα=12i,β=3+2iとするとき
線分ABを1辺とする正三角形の他の頂点Cを表す複素数γを求めよ。
投稿日:2025.03.09

<関連動画>

福田の数学〜東工大2022理系1修正版

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、f(z)=z2+az+b とする。a,bが
|a|1,  |b|1
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、z¯はzと共役な複素数とし、
iを虚数単位とする。
zz¯=4 ①     |z|=|z3+i| 

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このときwnが負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
6 iを虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|z+2|=2|z-1| を満たす点zの全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
{|z+2|2|z1|}|z+6i|=3{|z+2|2|z1|}|z2i|
を満たす点zの全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点zが(2)における図形S上を動くとき、w=1z で定義される点wが描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 

【数C】【複素数平面】複素数と図形5 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
zが、点1を通り実軸に垂直な直線上を動くとき、
w=1z はどのような図形を描くか。
この動画を見る 
PAGE TOP preload imagepreload image