問題文全文(内容文):
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式
問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。
問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式
問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。
問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
チャプター:
0:00 第一問1
2:42 第一問2
5:44 第二問
9:40 第三問
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式
問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。
問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式
問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。
問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
投稿日:2025.03.07





