問題文全文(内容文):
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
投稿日:2025.01.01





