福田のおもしろ数学365〜関数方程式を解こう - 質問解決D.B.(データベース)

福田のおもしろ数学365〜関数方程式を解こう

問題文全文(内容文):
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
投稿日:2025.01.01

<関連動画>

福田のおもしろ数学093〜条件付きの式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a^2$+$c^2$=1, $b^2$+$d^2$=1, $ab$+$cd$=0 のとき次を示せ。
$a^2$+$b^2$=1, $c^2$+$d^2$=1, $ac$+$bd$=0
この動画を見る 

大学入試問題#434「基本的な式変形」 藤田医科大学(2023) #式変形

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt{ 6+2\sqrt{ 5 } }$のとき
$\alpha^5-\alpha^4-12\alpha^3+12\alpha^2+16\alpha$の値を求めよ。

出典:2023年藤田医科大学 入試問題
この動画を見る 

明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る 

関西大 整式の剰余 2つの解法で

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ

2001関西大過去問
この動画を見る 

チャレンジ問題(複雑なパズル)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\dfrac{1}{1}=?,\ \dfrac{2\cdot 3}{1\cdot 3}=?,\ \dfrac{3\cdot 5\cdot 6}{1\cdot 3\cdot 5}=?$
$\dfrac{4 \cdot 7 \cdot 9 \cdot 10}{1 \cdot 3 \cdot 5 \cdot 7}=?,\ \dfrac{5 \cdot 9 \cdot 12 \cdot 14 \cdot 15}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 4}=?$

(1)各式の右辺を計算せよ.
(2)式の両辺がどのように続くか予想せよ.
(3)(2)の予想を示せ.
この動画を見る 
PAGE TOP