問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{\sqrt{n+5}-\sqrt{n+3}}{\sqrt{n+1}-\sqrt{n}}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{n}{\sqrt{n^2+2}-\sqrt{n}}$
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{\sqrt{n+5}-\sqrt{n+3}}{\sqrt{n+1}-\sqrt{n}}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{n}{\sqrt{n^2+2}-\sqrt{n}}$
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{\sqrt{n+5}-\sqrt{n+3}}{\sqrt{n+1}-\sqrt{n}}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{n}{\sqrt{n^2+2}-\sqrt{n}}$
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{\sqrt{n+5}-\sqrt{n+3}}{\sqrt{n+1}-\sqrt{n}}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{n}{\sqrt{n^2+2}-\sqrt{n}}$
投稿日:2025.05.18





