【整数問題】素数を扱う難問!2通りで解説!【奈良県立医科大学】 - 質問解決D.B.(データベース)

【整数問題】素数を扱う難問!2通りで解説!【奈良県立医科大学】

問題文全文(内容文):
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
チャプター:

00:00 導入部分
00:45 【解法1】n乗-n乗で因数分解
07:52 【解法2】〇〇に着目してから因数分解

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
投稿日:2024.12.23

<関連動画>

一橋大(類)整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^n+1$が7の倍数となる自然数$n$をすべて求めよ.
ただし,$n\leqq 50$である.

一橋大(類)過去問
この動画を見る 

福田のおもしろ数学360〜1が連続1991個並ぶ数は素数か

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1が連続1991個並ぶ数は素数でないことを証明せよ。
この動画を見る 

アジア太平洋数学オリンピックのナイスな整数問題

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数である.
$a^2+b+c,a+b^2+c,a+b+c^2$
この3つのすべてが平方数になることはないことを示せ.

アジア太平洋数学オリンピック過去問
この動画を見る 

福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る 

中学生はよく間違えるルートに関する問題 西武文理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{4x^2}$が$10$より小さい整数となるような整数$x$は何個あるか
この動画を見る 
PAGE TOP