【高校数学】 数B-82 いろいろな数列の和③ - 質問解決D.B.(データベース)

【高校数学】 数B-82 いろいろな数列の和③

問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$\dfrac{1}{1+\sqrt2},\dfrac{1}{\sqrt2+\sqrt3},\dfrac{1}{\sqrt3+\sqrt4},・・・$

②$\dfrac{1}{1+\sqrt3},\dfrac{1}{\sqrt3+\sqrt5},\dfrac{1}{\sqrt5+\sqrt7},・・・$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$\dfrac{1}{1+\sqrt2},\dfrac{1}{\sqrt2+\sqrt3},\dfrac{1}{\sqrt3+\sqrt4},・・・$

②$\dfrac{1}{1+\sqrt3},\dfrac{1}{\sqrt3+\sqrt5},\dfrac{1}{\sqrt5+\sqrt7},・・・$
投稿日:2016.02.17

<関連動画>

福田のおもしろ数学499〜1分チャレンジ!数値計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{(4\times 7+2)(6\times 9+2)(8\times 11+2)\cdots}{(5\times 8 +2)(7\times 10 +2)(9\times 12 +2)\cdots }$

$\dfrac{\cdots (100\times 103+2)}{\cdots (99\times 102+2)}$

を計算して下さい。
    
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第1問(1)〜命題の真偽とカードの裏表

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、
次のように置かれている。

${\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}$

これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき
には$a_n=1$、必要のないときには$a_n=0$とするとき
$\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田のおもしろ数学323〜小数部分の和を不等式で評価する

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x$の小数部分を$\{x\}$で表すことにする。
$\displaystyle\{\sqrt{1}\}+\{\sqrt{2}\}+\{\sqrt{3}\}+・・・+\{\sqrt{n^2}\}\leqq \frac{n^2-1}{2}$
を証明せよ。
この動画を見る 

広島県立 特殊な漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#県立広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島県立大学過去問題
各項が正の数列{$a_n$}
初項~第n項の和を$S_n$
$a_1^3+a_2^3+a_3^3+\cdots+a_n^3=2S_n^2$が成り立つ
(1)$a_n^2+2a_n=4S_n$が成り立つことを示せ。
(2)一般項$a_n$と$S_n$を求めよ。
この動画を見る 

数検準1級 三項間漸化式 極限 高校数学

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
この動画を見る 
PAGE TOP