問題文全文(内容文):
$p,q$は素数$(p \lt q)$
$\dfrac{p}{p+1}+\dfrac{q+1}{q}=\dfrac{2n}{n+2}$
を満たす正の整数$n$が存在する。
このとき、$q-p$の値をすべて求めよ。
$p,q$は素数$(p \lt q)$
$\dfrac{p}{p+1}+\dfrac{q+1}{q}=\dfrac{2n}{n+2}$
を満たす正の整数$n$が存在する。
このとき、$q-p$の値をすべて求めよ。
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$p,q$は素数$(p \lt q)$
$\dfrac{p}{p+1}+\dfrac{q+1}{q}=\dfrac{2n}{n+2}$
を満たす正の整数$n$が存在する。
このとき、$q-p$の値をすべて求めよ。
$p,q$は素数$(p \lt q)$
$\dfrac{p}{p+1}+\dfrac{q+1}{q}=\dfrac{2n}{n+2}$
を満たす正の整数$n$が存在する。
このとき、$q-p$の値をすべて求めよ。
投稿日:2025.02.24





