福田の数学〜明治大学2024全学部統一IⅡAB第2問〜高次方程式の解と面積 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024全学部統一IⅡAB第2問〜高次方程式の解と面積

問題文全文(内容文):
$
\fcolorbox{#000}{ #fff }{2}
$

$
xについての関数f(x), g(x), h(x)を
$

$
f(x) = 4x ^ 4 , \quad g(x) = 12x + 8 h(x) = 4x ^ 2 + 1
$

$
により定める。座標平面上で曲線 y = f (x)と直線 y = g(x)は、異なる2点で交わる。それら交点の座標をそれぞれa, b(ただしa < b)とする。
$

$
(1) f(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ア \ \ $}
x² +
\fcolorbox{#000}{ #fff }{$イ \ \ $}
)², g(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ウ \ \ $}
x+
\fcolorbox{#000}{ #fff }{$エ \ \ $}
)^2 である。
$

$
(2) a + b =
\fcolorbox{#000}{ #fff }{$オ \ \ $}
b - a = \sqrt{
\fcolorbox{#000}{ #fff }{$カ \ \ $}}
である。
$

$
(3) x = a, \ x = bはx^5 =
\fcolorbox{#000}{ #fff }{$カ \ \ $}
x +
\fcolorbox{#000}{ #fff }{$ク \ \ $}
を満たすので、 b ^ 5 - a ^ 5 =
\fcolorbox{#000}{ #fff }{$ケ \ \ $}
\sqrt{
\fcolorbox{#000}{ #fff }{$コ \ \ $}}
である。
$

$
(4) 座標平面上で曲線y = f(x) と直線y = g(x) で囲まれる図形の面積は
\fcolorbox{#000}{ #fff }{$サシ \ \ \ \ \ $}
\sqrt{\fcolorbox{#000}{ #fff }{$ス \ \ $}}
である。
$
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\fcolorbox{#000}{ #fff }{2}
$

$
xについての関数f(x), g(x), h(x)を
$

$
f(x) = 4x ^ 4 , \quad g(x) = 12x + 8 h(x) = 4x ^ 2 + 1
$

$
により定める。座標平面上で曲線 y = f (x)と直線 y = g(x)は、異なる2点で交わる。それら交点の座標をそれぞれa, b(ただしa < b)とする。
$

$
(1) f(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ア \ \ $}
x² +
\fcolorbox{#000}{ #fff }{$イ \ \ $}
)², g(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ウ \ \ $}
x+
\fcolorbox{#000}{ #fff }{$エ \ \ $}
)^2 である。
$

$
(2) a + b =
\fcolorbox{#000}{ #fff }{$オ \ \ $}
b - a = \sqrt{
\fcolorbox{#000}{ #fff }{$カ \ \ $}}
である。
$

$
(3) x = a, \ x = bはx^5 =
\fcolorbox{#000}{ #fff }{$カ \ \ $}
x +
\fcolorbox{#000}{ #fff }{$ク \ \ $}
を満たすので、 b ^ 5 - a ^ 5 =
\fcolorbox{#000}{ #fff }{$ケ \ \ $}
\sqrt{
\fcolorbox{#000}{ #fff }{$コ \ \ $}}
である。
$

$
(4) 座標平面上で曲線y = f(x) と直線y = g(x) で囲まれる図形の面積は
\fcolorbox{#000}{ #fff }{$サシ \ \ \ \ \ $}
\sqrt{\fcolorbox{#000}{ #fff }{$ス \ \ $}}
である。
$
投稿日:2024.08.30

<関連動画>

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の2指数・対数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2018年度センター試験・数学ⅡB・過去問解説動画です
この動画を見る 

京都大 4次方程式の解の個数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?

出典:2008年京都大学 過去問
この動画を見る 

19東京都教員採用試験(数学:3番x軸回転の体積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3⃣$f(x)=x \sqrt{4-x^2} \quad (0 \leqq x \leqq 2)$とy=xで囲まれた領域Sの回転体の体積Vを求めよ。
(1)y=f(x)の最大値
(2)y=xと$y=x \sqrt{4-x^2}$ $(0 \leqq x \leqq 2)$で囲まれたSの値を求めよ。
(3)Sの回転体の体積V
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。

2021上智大学文系過去問
この動画を見る 

漸化式・対数の利用の融合問題 福井大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_{n+1}=\dfrac{a_n}{a_n+3},a_{11}$は小数点以下0でない数が初めて表れるのは小数第何位?

福井大過去問
この動画を見る 
PAGE TOP