福田の数学〜明治大学2024全学部統一IⅡAB第2問〜高次方程式の解と面積 - 質問解決D.B.(データベース)

福田の数学〜明治大学2024全学部統一IⅡAB第2問〜高次方程式の解と面積

問題文全文(内容文):
$
\fcolorbox{#000}{ #fff }{2}
$

$
xについての関数f(x), g(x), h(x)を
$

$
f(x) = 4x ^ 4 , \quad g(x) = 12x + 8 h(x) = 4x ^ 2 + 1
$

$
により定める。座標平面上で曲線 y = f (x)と直線 y = g(x)は、異なる2点で交わる。それら交点の座標をそれぞれa, b(ただしa < b)とする。
$

$
(1) f(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ア \ \ $}
x² +
\fcolorbox{#000}{ #fff }{$イ \ \ $}
)², g(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ウ \ \ $}
x+
\fcolorbox{#000}{ #fff }{$エ \ \ $}
)^2 である。
$

$
(2) a + b =
\fcolorbox{#000}{ #fff }{$オ \ \ $}
b - a = \sqrt{
\fcolorbox{#000}{ #fff }{$カ \ \ $}}
である。
$

$
(3) x = a, \ x = bはx^5 =
\fcolorbox{#000}{ #fff }{$カ \ \ $}
x +
\fcolorbox{#000}{ #fff }{$ク \ \ $}
を満たすので、 b ^ 5 - a ^ 5 =
\fcolorbox{#000}{ #fff }{$ケ \ \ $}
\sqrt{
\fcolorbox{#000}{ #fff }{$コ \ \ $}}
である。
$

$
(4) 座標平面上で曲線y = f(x) と直線y = g(x) で囲まれる図形の面積は
\fcolorbox{#000}{ #fff }{$サシ \ \ \ \ \ $}
\sqrt{\fcolorbox{#000}{ #fff }{$ス \ \ $}}
である。
$
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\fcolorbox{#000}{ #fff }{2}
$

$
xについての関数f(x), g(x), h(x)を
$

$
f(x) = 4x ^ 4 , \quad g(x) = 12x + 8 h(x) = 4x ^ 2 + 1
$

$
により定める。座標平面上で曲線 y = f (x)と直線 y = g(x)は、異なる2点で交わる。それら交点の座標をそれぞれa, b(ただしa < b)とする。
$

$
(1) f(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ア \ \ $}
x² +
\fcolorbox{#000}{ #fff }{$イ \ \ $}
)², g(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ウ \ \ $}
x+
\fcolorbox{#000}{ #fff }{$エ \ \ $}
)^2 である。
$

$
(2) a + b =
\fcolorbox{#000}{ #fff }{$オ \ \ $}
b - a = \sqrt{
\fcolorbox{#000}{ #fff }{$カ \ \ $}}
である。
$

$
(3) x = a, \ x = bはx^5 =
\fcolorbox{#000}{ #fff }{$カ \ \ $}
x +
\fcolorbox{#000}{ #fff }{$ク \ \ $}
を満たすので、 b ^ 5 - a ^ 5 =
\fcolorbox{#000}{ #fff }{$ケ \ \ $}
\sqrt{
\fcolorbox{#000}{ #fff }{$コ \ \ $}}
である。
$

$
(4) 座標平面上で曲線y = f(x) と直線y = g(x) で囲まれる図形の面積は
\fcolorbox{#000}{ #fff }{$サシ \ \ \ \ \ $}
\sqrt{\fcolorbox{#000}{ #fff }{$ス \ \ $}}
である。
$
投稿日:2024.08.30

<関連動画>

大学入試問題#775「ほぼ、詰んでる」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} x^2|\sin\ x|\ dx$

出典:1998年横浜国立大学 入試問題
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(5)〜絶対値の付いた関数の定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)定積分$\displaystyle \int_{0}^{2} (x+1)\vert x-1 \vert dx$

の値は$\boxed{キ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

大学入試問題#93 昭和大学医学部(2016) 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$log_xy=log_yx=-log_3(x+y)$をみたす実数$x,y$を求めよ。

出典:2016年昭和大学医学部 入試問題
この動画を見る 

07三重県教員採用試験(数学:11番 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{11}$
$0\leqq x\leqq \pi$である.
$y=\sin x$と$y=2\sin 2x$とで囲まれた図形の
面積を求めよ.
この動画を見る 

#千葉大学2016#定積分#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^3x$ $dx$

出典:2016年千葉大学
この動画を見る 
PAGE TOP