問題文全文(内容文):
$n$を正の整数とするとき
$\left(1+\dfrac{1}{n}\right)^n \lt e$
を証明して下さい。
$e$は自然対数の底とする。
$n$を正の整数とするとき
$\left(1+\dfrac{1}{n}\right)^n \lt e$
を証明して下さい。
$e$は自然対数の底とする。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$n$を正の整数とするとき
$\left(1+\dfrac{1}{n}\right)^n \lt e$
を証明して下さい。
$e$は自然対数の底とする。
$n$を正の整数とするとき
$\left(1+\dfrac{1}{n}\right)^n \lt e$
を証明して下さい。
$e$は自然対数の底とする。
投稿日:2025.05.26





