福田のおもしろ数学515〜関数の最大と最小 - 質問解決D.B.(データベース)

福田のおもしろ数学515〜関数の最大と最小

問題文全文(内容文):

$\left\vert \sin x+\dfrac{2}{3+\sin x}+b\right\vert$

の最大値を$f(b)$とするとき、

($b$は任意の実数)

$f(b)$の最小値を求めて下さい。
    
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\left\vert \sin x+\dfrac{2}{3+\sin x}+b\right\vert$

の最大値を$f(b)$とするとき、

($b$は任意の実数)

$f(b)$の最小値を求めて下さい。
    
投稿日:2025.05.31

<関連動画>

福田の数学〜中央大学202理工学部第3問〜関数の列と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x),g(x)$に対し、$s_n(x)=f(x)^n+g(x)^n$とおき、さらに$s_1(x)=x, s_2(x)=x^2+2$が成り立つとする。
(1) $f(x)+g(x)$と$s_3(x)$を求めよ。
(2) $s_{n+2}(x)$を$s_n(x)$と$s_{n+1}(x)$を用いて表せ。
(3) $s_n(x)$の$x=0$における値$s_n(0)$と微分係数$s_n'(0)$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第5問〜媒介変数表示のグラフと回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $xy$平面上において、以下の媒介変数表示をもつ曲線を$C$とする。
$\left\{\begin{array}{1}
x=\sin t+\displaystyle\frac{1}{2}\sin 2t    \\
y=-\cos t-\displaystyle\frac{1}{2}\cos 2t-\frac{1}{2}\\
\end{array}\right.
$
ただし、0≦$t$≦$\pi$とする。
(1)$y$の最大値、最小値を求めよ。
(2)$\displaystyle\frac{dy}{dt}$<0 となる$t$の範囲を求め、$C$の概形を$xy$平面上に描け。
(3)$C$を$y$軸のまわりに1回転してできる立体の体積$V$を求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $ \displaystyle f(x)= \frac{x-a}{x^2+x+1}$ が $x=-1$で極値をとるように、定数$a$の値を定めよ。

この動画を見る 

福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(11) 定義に従って(3)
$f'(a)$が存在するとき、
$\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}$
を$a,f(a),f'(a)$で表せ。
この動画を見る 
PAGE TOP