福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2 - 質問解決D.B.(データベース)

福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2

問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
投稿日:2025.07.16

<関連動画>

【高校数学】 数Ⅱ-19 不等式の証明①

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。

①$x^2+4x+4=-y^2+2y-1$

②$a^2+b^2 \geqq 2 (a+b-1)$
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

100年前の東大入試「1000の10乗根を小数第6位まで求めよ!」物理オリンピック金メダリスト林俊介解説

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[10]{1000}$を二項定理を用いて小数第六位まで求めよ.
この動画を見る 

東京大学の整数問題!5つの文字を求める!?どう解く?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
n,a,b,c,dは0または正の整数であって、
a^2+b^2+c^2+d^2=n^2-6
a+b+c+d≦n
a≧b≧c≧d
を満たすものとする。このような整数の組(n,a,b,c,d)をすべて求めよ。
この動画を見る 
PAGE TOP