いい問題 - 質問解決D.B.(データベース)

いい問題

問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
投稿日:2023.07.27

<関連動画>

山梨大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n+1}=2^{n^2-25n-12}a_{n}$

(1)
一般項を求めよ

(2)
$a_{n} \gt 1$となる最小の$n$

出典:山梨大学 過去問
この動画を見る 

20年5月数学検定準1級1次試験(数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$

20年5月数学検定準1級1次試験(数列)過去問
この動画を見る 

【数学B/数列】等差数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等差数列の一般項を求めよ。
(1)
初項が$3$、公差が$2$である等差数列。

(2)
$17,14,11,8,5…$

(3)
第$4$項が$5,$第$10$項が$23$である等差数列。
この動画を見る 

和歌山県立医大 奈良女子大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B#和歌山県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$n^3(n^2-1)$が8の倍数であることを示せ($n$)整数

②$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k(k+1)(k+2)(k+3)}$


出典:和歌山県立医科大学/奈良女子大学 過去問
この動画を見る 

開成中学 整数 等差数列の和

アイキャッチ画像
単元: #算数(中学受験)#数列#数列とその和(等差・等比・階差・Σ)#過去問解説(学校別)#数学(高校生)#数B#開成中学
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$

(1)
$7^2$

(2)
$10^2$

(3)
$30^2$は何通りあるか

出典:2018年開成中学校 過去問
この動画を見る 
PAGE TOP