【数Ⅱ】【微分法と積分法】極限の計算 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】極限の計算 ※問題文は概要欄

問題文全文(内容文):
(1)$\displaystyle \lim_{ x \to -2 } (x^2+1)(x-1)$
(2)$\displaystyle \lim_{ x \to 1 } (x^3-1)(x-1)$
(3)$\displaystyle \lim_{ x \to 2 } (x^2-x-2)(x^2+x-6)$
(4)$\displaystyle \lim_{ x \to -3 } \frac{1}{x+3}(\frac{12}{x-3}+2)$
チャプター:

0:00 オープニング
0:04 導入 数Ⅱの極限の話
0:51 極限(lim)の解き方とは?
1:43 (1)の解説
2:05 (2)の解説
2:40 3乗‐3乗の因数分解の復習
3:53 (3)の解説
4:27 (4)の解説
5:44 極限の問題の記述の注意点
6:30 エンディング

単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$\displaystyle \lim_{ x \to -2 } (x^2+1)(x-1)$
(2)$\displaystyle \lim_{ x \to 1 } (x^3-1)(x-1)$
(3)$\displaystyle \lim_{ x \to 2 } (x^2-x-2)(x^2+x-6)$
(4)$\displaystyle \lim_{ x \to -3 } \frac{1}{x+3}(\frac{12}{x-3}+2)$
投稿日:2025.02.19

<関連動画>

福田の数学〜早稲田大学2024社会科学部第1問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$連立不等式
y≦-\frac{2}{3}x+4, y≧x-1,x≧0,y≧0
の表す領域をDとする。点(x,y)が領域Dを動くとき、次の問いに答えよ。
$$(1)領域Dを座標平面上に図示せよ。$$
$$(2)-2x+yの最大値と、そのときのx,yの値を求めよ。$$
$$(3)2x+yの最大値と、そのときのx,yの値を求めよ。$$
$$(4)aがすべての実数を動くとき、ax+yの最大値をaで分類せよ。$$
この動画を見る 

よくある方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+x+1=0$のとき$x^5+x^4+1=$?
この動画を見る 

2021東京医科大学 2つの解法で 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$F(x)$を$x^3-2x^2+3$で割ると$4x^2+5x+33$余る.
$F(x)$を$x^2-3x+3$で割った余りを求めよ.

2021東京医科大過去問
この動画を見る 

名古屋大学2002どっちがでかいか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
①$\ell_n\left(1+\dfrac{1}{x}\right)$ vs $\dfrac{1}{x+1}$
②$\left(1+\dfrac{2002}{2001}\right)^{\frac{2001}{2002}}$ vs $\left(1+\dfrac{2001}{2002}\right)^{\frac{2002}{2001}}$
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 
PAGE TOP