ざ・挟み撃ち - 質問解決D.B.(データベース)

ざ・挟み撃ち

問題文全文(内容文):
$\dfrac{1}{\sqrt{n^4+1}}+\dfrac{2}{\sqrt{n^4+2}}+・・・・・・+\dfrac{n}{\sqrt{n^4+n}}$
$\displaystyle \lim_{n\to \infty} \displaystyle \sum_{k=1}^{n}\dfrac{k}{\sqrt{n^4+k}}$
$a_n=\displaystyle \sum_{k=1}^n \dfrac{n}{\sqrt{k}}$
$b_n=\displaystyle \sum_{k=1}^n \dfrac{1}{\sqrt{2k+1}}$
$\displaystyle \lim_{n\to \infty} a_n,\displaystyle \lim_{n\to \infty}\dfrac{bn}{an}$を求めよ.

東大1990過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\sqrt{n^4+1}}+\dfrac{2}{\sqrt{n^4+2}}+・・・・・・+\dfrac{n}{\sqrt{n^4+n}}$
$\displaystyle \lim_{n\to \infty} \displaystyle \sum_{k=1}^{n}\dfrac{k}{\sqrt{n^4+k}}$
$a_n=\displaystyle \sum_{k=1}^n \dfrac{n}{\sqrt{k}}$
$b_n=\displaystyle \sum_{k=1}^n \dfrac{1}{\sqrt{2k+1}}$
$\displaystyle \lim_{n\to \infty} a_n,\displaystyle \lim_{n\to \infty}\dfrac{bn}{an}$を求めよ.

東大1990過去問
投稿日:2021.09.17

<関連動画>

【置き換え方を学ぶ!!】高校で出てくる展開(乗法の公式)と解き方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
展開(乗法の公式)と解き方について解説します。
$(2x-3y)^2$
$(3x+4y)(3x-4y)$
$(x-2)(x+3)$
$(a+b+c)^2$
$(3a+1)^2(3x-1)^2$
$(4x^2+y^2)(2x+y)(2x-y)$
この動画を見る 

初めまして 二次不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
不等式を解け
(1) $x-2< 0$
(2) $x(x-2) < 0$
この動画を見る 

【基礎から解説】2次関数の最大・最小の基本を解説!(数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の2次関数の最大値・最小値を求めよ。
(1)
$y=2x^2+8x+5$

(2)
$y=-\displaystyle \frac{1}{2}x^2+x-1$
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【数Ⅰ】集合と命題:センター試験2013年

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形に関する条件p,q,rを次のように定める。p:3つの内角がすべて異なる q:直角三角形でない r:45度の内角は1つもない。条件pの否定をpバーで表し、同様にq,rはそれぞれ条件qバー、rバーの否定を表すものとする。
[1]命題「r ⇒ (pまたはq)」の対偶は「(ア)⇒r」である。(ア)に当てはまるものを, 次の(0)~(3)のうちから1つ選べ。
(0)(pかつq) (1) (pかつq) (2) (pまたはq ) (3) (pまたはq)

[2] 次の(0)~(4)のうち、命題「(pまたはq) ⇒ r」に対する反例となっている三角形は(イ)と(ウ)である。(イ)と(ウ)に当てはまるものを、(0)~(4)のうちから1つずつ選べ。ただし、(イ)と(ウ)の解答の順序は問わない。
(0) 直角二等辺三角形 (1) 内角が30度,45度,105度の三角形 (2) 正三角形 (3) 3辺の長さが3,4,5の三角形 (4) 頂角が45度の二等辺三角形

[3] rは(pまたはq)であるための(エ) 。(エ)に当てはまるものを、次の(0)~(3)のうちから1つ選べ。
(0) 必要十分条件である (1) 必要条件であるが十分条件ではない (2) 十分条件であるが必要条件ではない (3) 必要条件でも十分条件でもない
この動画を見る 
PAGE TOP