日本医科大 複素数 - 質問解決D.B.(データベース)

日本医科大 複素数

問題文全文(内容文):
$\theta=\displaystyle \frac{\pi}{7}$ $z=\cos\theta+i \sin\theta$

(1)
$\cos\theta,\cos2\theta,\cos3\theta$を$z$で表せ

(2)
$\cos\theta・\cos2\theta・\cos3\theta$

(3)
$\cos\theta+\cos3\theta+\cos5\theta$の値を求めよ

出典:日本医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{\pi}{7}$ $z=\cos\theta+i \sin\theta$

(1)
$\cos\theta,\cos2\theta,\cos3\theta$を$z$で表せ

(2)
$\cos\theta・\cos2\theta・\cos3\theta$

(3)
$\cos\theta+\cos3\theta+\cos5\theta$の値を求めよ

出典:日本医科大学 過去問
投稿日:2019.12.20

<関連動画>

複素数 日本大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$

2000日大過去問
この動画を見る 

滋賀大 複素数 数列 漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n,b_n$整数
$(3+2i)^n=a_n+b_ni$
$a_n,b_n$の一般項を求めよ

出典:滋賀大学 過去問
この動画を見る 

茨城大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$


(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?

出典:2005年茨城大学 過去問
この動画を見る 

連立二元4次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 
PAGE TOP