【高校数学】数Ⅲ-91 微分(復習編) - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-91 微分(復習編)

問題文全文(内容文):
次の関数を微分せよ。

①$y=x^4+x^3+x^2+x+1$

②$y=-2x^3+7x+4$

③$y=-\dfrac{3}{2}x^4+\dfrac{1}{3}x^3-5x$

④$y=(x^3-1)^2$

⑤関数$f(x)=\vert x(x-2) \vert $が$x=2$で
微分可能であるかどうかを調べよ。
単元: #微分とその応用#微分法#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=x^4+x^3+x^2+x+1$

②$y=-2x^3+7x+4$

③$y=-\dfrac{3}{2}x^4+\dfrac{1}{3}x^3-5x$

④$y=(x^3-1)^2$

⑤関数$f(x)=\vert x(x-2) \vert $が$x=2$で
微分可能であるかどうかを調べよ。
投稿日:2018.05.02

<関連動画>

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.4次関数$y=f(x)$のグラフの2つの変曲点の座標は
$(-1,1),(1,8)$であり、点$(1,8)$における接線は
直線$y=x$に平行である。関数$f(x)$を求めよ。
2.$a$は定数とする。
曲線$y=(x^2+2x+a)e^x$の変曲点の個数を調べよ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題033〜浜松医科大学2016年度理系第3問〜指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、必要があれば以下の極限値の公式を用いてもよい。
$\lim_{x \to \infty}\frac{x}{e^x}=0$
(1)方程式$2^x=x^2 (x \gt 0)$の実数解の個数を求めよ。
(2)aを正の実数とし、xについての方程式$a^x=x^a (x \gt 0)$を考える。
$(\textrm{a})$方程式$a^x=x^a (x \gt 0)$の実数解の個数を求めよ。
$(\textrm{b})$方程式$a^x=x^a (x \gt 0)$でa,xがともに正の整数となるa,xの組$(a,x)$
をすべて求めよ。ただし$a \ne x$とする。

2016浜松医科大学理系過去問
この動画を見る 

福田の数学〜筑波大学2024理系第4問〜媒介変数表示で表された曲線のグラフと面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、媒介変数表示$x=-t(t-\dfrac32), y=\sin\pi t ~~ (0\leqq t \leqq 1)$で表される曲線を$C$とする。以下の問いに答えよ
(1) 定積分$\displaystyle \int_0^1 t\sin\pi t dt$を求めよ。
(2) 実数$a$に対し、曲線$C$と直線$x=a$の共有点の個数を求めよ。
(3) 曲線$C$と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 $x>0$のとき、次の不等式を証明せよ。

(1) $sin x>x-\displaystyle \frac{x^2}{2}$

(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
この動画を見る 
PAGE TOP