福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 直線x+y=1に接する楕円\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)がある。\\
このとき、b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }である。\\
この楕円を直線y=bのまわりに1回転してできる立体の体積は、\\
a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}\hspace{10pt}のとき、最大値\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2\hspace{10pt}をとる。
\end{eqnarray}

2022早稲田大学人間科学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 直線x+y=1に接する楕円\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)がある。\\
このとき、b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }である。\\
この楕円を直線y=bのまわりに1回転してできる立体の体積は、\\
a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}\hspace{10pt}のとき、最大値\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2\hspace{10pt}をとる。
\end{eqnarray}

2022早稲田大学人間科学部過去問
投稿日:2022.08.06

<関連動画>

【数Ⅲ】グラフを描く【チェックするべきポイントを押さえる】

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
グラフを描くことに関して解説していきます.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、$f(x)=x^3-3ax$とする。区間$-1 \leqq x \leqq 1$における
$|f(x)|$の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 関数 y=log(x-1) のグラフ上の点P(-2,0)における接線と法線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $y=\log(x-1)$ のグラフ上の点P($-2,0$)における接線と法線の方程式を求めよう。
この動画を見る 

熊本大 関数の領域

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$

$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。

出典:2001年熊本大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=x^{-2}2^x(x≠0)$について、$f'(x) \gt 0$となるための
xに関する条件を求めよ。
(2)方程式$2^x=x^2$は相異なる3個の実数解をもつことを示せ。
(3)方程式$2^x=x^2$の解で有理数であるものを全て求めよ。

2015名古屋大学理系過去問
この動画を見る 
PAGE TOP