【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。 - 質問解決D.B.(データベース)

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説:傾きはdy/dx
0:48 問題解説:通る点と傾き
1:00 放物線上の点における接線を求める裏技の導出
1:57 裏技の使い方
2:26 今回のポイント
2:37 名言

単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
投稿日:2021.03.19

<関連動画>

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ xy平面上の曲線Cを、媒介変数tを用いて次のように定める。\\
x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)\\
以下の問いに答えよ。\\
(1)区間0 \lt t \lt \frac{\pi}{6}において、\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0であることを示せ。\\
(2)曲線Cの0 \leqq t \leqq \frac{\pi}{6}の部分、x軸、直線y=\frac{1}{\sqrt3}xで囲まれた\\
図形の面積を求めよ。\\
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を\\
原点を中心として反時計回りに\frac{\pi}{3}だけ回転させた点はC上\\
にあることを示せ。\\
(4)曲線Cの概形を図示せよ。
\end{eqnarray}

2022九州大学理系過去問
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 

【数Ⅲ】微分の応用:漸近線があるグラフの概形part1

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)= 2x+\sqrt{x^2-1}$ の漸近線を求めよ
この動画を見る 

福田のわかった数学〜高校3年生理系096〜不等式の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(3)\\
\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)を証明せよ。
\end{eqnarray}
この動画を見る 

【数Ⅲ-174】曲線の長さ①(基本編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)

ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①

②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。

③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
この動画を見る 
PAGE TOP