問題文全文(内容文):
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
チャプター:
0:00 オープニング
0:05 問題文
0:15 (B)からbとcを求める
1:54 (A)(C)からaを求める
4:40 名言
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
投稿日:2021.05.16