問題文全文(内容文):
以下を求めよ。
$\displaystyle \frac{1}{1・2}+\displaystyle \frac{1}{2・3}+\displaystyle \frac{1}{3・4}+…+\displaystyle \frac{1}{n(n+1)}=??$
$\displaystyle \frac{1}{1・3}+\displaystyle \frac{1}{3・5}+\displaystyle \frac{1}{5・7}+…+\displaystyle \frac{1}{(2n-1)(2n+1)}=??$
以下を求めよ。
$\displaystyle \frac{1}{1・2}+\displaystyle \frac{1}{2・3}+\displaystyle \frac{1}{3・4}+…+\displaystyle \frac{1}{n(n+1)}=??$
$\displaystyle \frac{1}{1・3}+\displaystyle \frac{1}{3・5}+\displaystyle \frac{1}{5・7}+…+\displaystyle \frac{1}{(2n-1)(2n+1)}=??$
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
以下を求めよ。
$\displaystyle \frac{1}{1・2}+\displaystyle \frac{1}{2・3}+\displaystyle \frac{1}{3・4}+…+\displaystyle \frac{1}{n(n+1)}=??$
$\displaystyle \frac{1}{1・3}+\displaystyle \frac{1}{3・5}+\displaystyle \frac{1}{5・7}+…+\displaystyle \frac{1}{(2n-1)(2n+1)}=??$
以下を求めよ。
$\displaystyle \frac{1}{1・2}+\displaystyle \frac{1}{2・3}+\displaystyle \frac{1}{3・4}+…+\displaystyle \frac{1}{n(n+1)}=??$
$\displaystyle \frac{1}{1・3}+\displaystyle \frac{1}{3・5}+\displaystyle \frac{1}{5・7}+…+\displaystyle \frac{1}{(2n-1)(2n+1)}=??$
投稿日:2019.12.05





