福田のおもしろ数学565〜Nesbittの不等式の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学565〜Nesbittの不等式の証明

問題文全文(内容文):

$a\gt 0,b\gt 0,c \gt 0$のとき

$\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \geqq \dfrac{3}{2}$

を証明して下さい。
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a\gt 0,b\gt 0,c \gt 0$のとき

$\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \geqq \dfrac{3}{2}$

を証明して下さい。
    
投稿日:2025.07.20

<関連動画>

福田のおもしろ数学277〜ガウス記号の等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$は正の整数とする。
$[\sqrt{n}+\sqrt{n+1}]=[\sqrt{ 4n+2 }]$であることを証明して下さい。
$[n]$は$x$を超えない最大の整数を表します。
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
この動画を見る 

【高校数学】部分分数分解の分母に二乗があるパターン

アイキャッチ画像
単元: #恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る 

#47 数検1級1次 過去問 二項定理

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#微分法と積分法#整式の除法・分数式・二項定理#不定積分・定積分#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(1+x)^n$を$c_0+c_1x+・・・+c_nx^n$とおく。
$\displaystyle \sum_{k=1}^n(-1)^k\displaystyle \frac{c_k}{k+1}$の値を求めよ。
この動画を見る 

福田のおもしろ数学325〜不定方程式の自然数解の個数

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$a,b,nは正の整数とする。$$
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{n}$$
$$を満たす(a,b)の組の個数が2017であるとき$$
$$nが平方数であることを示せ。$$
この動画を見る 
PAGE TOP