【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
投稿日:2022.09.01

<関連動画>

すべて選べ。高校の内容だけど、中学生も知っておいて損はない。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n(n+1)(n+5)$は何の倍数?(n:整数)
すべて選べ
(a)2の倍数
(b)3の倍数
(c)6の倍数
(d)12の倍数
この動画を見る 

息抜き整数問題(でもそんなに簡単じゃないよ)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
この動画を見る 

京都大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数であり,$d,p$は素数である.
$a^p-b^p=d$ならば$d$を$2p$で割った余りは1であることを示せ.

1995京都大過去問
この動画を見る 

コメント欄はありがたい 素晴らしい別解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る 

合同式2021

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021^{2021^{2021}}$を$42$で割った余りを求めよ.
この動画を見る 
PAGE TOP