福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ rを正の実数とし、円C_1:(x-2)^2+y^2=r^2、楕円C_2:\frac{x^2}{9}+y^2=1を考える。\\
(1)円C_1と楕円C_2の共有点が存在するようなrの値の範囲は\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }である。\\
(2)r=1のとき、C_1とC_2の共有点の座標を全て求めると\boxed{\ \ ク\ \ }である。\\
これらの共有点のうちy座標が正となる点のy座標をy_0とする。連立不等式\\
\\
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right. の表す領域の面積は\boxed{\ \ ケ\ \ }である。\\
\\
\\

(3)連立不等式
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right. の表す領域をDとする。Dをy軸のまわりに\\
1回転させてできる立体の体積は\boxed{\ \ コ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ rを正の実数とし、円C_1:(x-2)^2+y^2=r^2、楕円C_2:\frac{x^2}{9}+y^2=1を考える。\\
(1)円C_1と楕円C_2の共有点が存在するようなrの値の範囲は\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }である。\\
(2)r=1のとき、C_1とC_2の共有点の座標を全て求めると\boxed{\ \ ク\ \ }である。\\
これらの共有点のうちy座標が正となる点のy座標をy_0とする。連立不等式\\
\\
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right. の表す領域の面積は\boxed{\ \ ケ\ \ }である。\\
\\
\\

(3)連立不等式
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right. の表す領域をDとする。Dをy軸のまわりに\\
1回転させてできる立体の体積は\boxed{\ \ コ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
投稿日:2022.06.09

<関連動画>

福田のわかった数学〜高校3年生理系102〜大小比較(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(2)\\
(1)x \gt 0のとき\log(1+\frac{1}{x})と\frac{1}{x+1}の大小を比較せよ。\\
(2)(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}の大小を比較せよ。
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(2)〜整式と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

新潟大 座標上の格子点の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93新潟大学
n自然数
$y=x^2$上の$(n,n^2)$における接線をl
$y=n^2$,l,及びy軸の3直線で囲まれた部分(境界含む)に含まれる格子点の数
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} Oを原点とする座標平面において、楕円D:\frac{x^2}{6}+\frac{y^2}{2}=1 上に異なる2点P_1,P_2\\
がある。P_1における接線l_1とP_2における接線l_2の交点をQ(a,\ b)とし、線分P_1P_2の\\
中点をRとする。\\
\\
(1)P_1の座標を(x_1,\ y_1)とするとき、l_1の方程式はx_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0\\
と表される。\\
\\
(2)直線P_1P_2の方程式は、a,bを用いてax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0と表される。\\
\\
(3)3点O,R,Qは一直線上にあって\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }が成り立つ。\\
\\
(4)l_1とl_2のどちらもy軸と平行ではないとする。このとき、l_1とl_2の傾きは\\
tの方程式(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0 の解である。\\
\\
(5)l_1とl_2が直交しながらP_1,P_2が動くとする。\\
(\textrm{i})Qの軌跡の方程式を求めよ。   (\textrm{ii})Rのy座標の最大値を求めよ。\\
(\textrm{iii})Rの軌跡の概形を描け。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)

アイキャッチ画像
単元: #三角関数#微分法#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$

(2)
$y=x\sin3x$

(3)
$y=\sin x\cos x$
この動画を見る 
PAGE TOP