「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
投稿日:2020.11.21

<関連動画>

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (1)\ 関数f(x)に対する以下の条件(P)を考える。\\
(P): f(x) \gt 3を満たす5以上の自然数nが存在する。\\
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。\\
(\textrm{a})f(n) \leqq 3を満たす5以上の自然数nが存在する。\\
(\textrm{b})f(n) \gt 3を満たす5未満の自然数nが存在する。\\
(\textrm{c})f(n) \leqq 3を満たす5未満の自然数nが存在する。\\
(\textrm{d})nが5以上の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{e})nが5未満の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{f})nが5未満の自然数ならばf(n) \gt 3が成り立つ。\\
(\textrm{g})f(n) \gt 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{h})f(n) \leqq 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{i})f(n) \leqq 3が5未満の全ての自然数nに対して成り立つ。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系082〜グラフを描こう(4)ルート混じりのグラフ

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(4)\hspace{180pt}\\
y=4x\sqrt x-3x^2+12x のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る 

東大2020文系第2問 ヨビノリたくみ&東大受験芸人たわし

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
4本の直線が縦横に引かれている
交わる箇所の点は16個
この点の中から5個選ぶ
(1)
5個選んだ時に、その点を通らない直線がちょうど2つになる場合の確率を求めよ

(2)
どの直線も少なくとも1つ通る場合の確率を求めよ

出典:2020年東京大学 文系第2問
この動画を見る 

三角比の有名角30°45°60° #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の有名角30°45°60°に関して解説していきます.
この動画を見る 

Prove π is larger than 3.05 ~Tokyo University Entrance Examination~

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\pi$が3.05より大きいことを証明せよ

出典:東京大学 入試問題
この動画を見る 
PAGE TOP