大学入試問題#169 愛知教育大学(2013) 区分求積法 - 質問解決D.B.(データベース)

大学入試問題#169 愛知教育大学(2013) 区分求積法

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。

出典:2013年愛知教育大学 入試問題
チャプター:

04:02~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{n+k}(log(n+k)-log\ n)$を求めよ。

出典:2013年愛知教育大学 入試問題
投稿日:2022.04.14

<関連動画>

これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):

$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$

$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$



$y=e^x$ $y^1=e^x$



動画内の図をみて求めよ



$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 

【数Ⅲ】【関数と極限】次の無限級数が0以上の実数xに対して収束することを示せ。和のf(x)のグラフをかけ。√x + √x/1+√x + √x/(1+√x)² + … + √x/(1+√x)^n-1 …

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数が$0$以上のすべての実数$x$に対して収束することを示せ。
また,その和を$f(x)$とおくとき,関数$y=f(x)$のグラフをかけ。

$\frac{\sqrt{x}}{1+\sqrt{x}} + \frac{\sqrt{x}}{(1+\sqrt{x})^2} + \cdots + \frac{\sqrt{x}}{(1+\sqrt{x})^{n-1}} + \cdots$
この動画を見る 

福田のわかった数学〜高校3年生理系031〜極限(31)関数の極限、色々な極限(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(1)\\
\lim_{x \to 1}\frac{(x-1)^2}{|x^2-1|} を求めよ。
\end{eqnarray}
この動画を見る 

練習問題1(数検準1級、教員採用試験 数列の極限)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_2=a_1=1$
$a_{n+2}=a_{n+1}+a_n$
$\displaystyle \lim_{ n \to \infty } \frac{loga_n}{n}$を求めよ。
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 
PAGE TOP