慈恵医大 3次方程式と虚数解 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

慈恵医大 3次方程式と虚数解 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値

出典:東京慈恵会医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値

出典:東京慈恵会医科大学 過去問
投稿日:2019.01.24

<関連動画>

【数Ⅱ】複素数と方程式:2次方程式の解の判別(最高次数の係数が文字の場合)kは定数とする。次の方程式の解の種類を判別せよ。(k²-1)x²+2(k-1)+2=0

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
この動画を見る 

解けるように作られた五次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x-1)^5+(x+3)^5=328(x+1)$
この動画を見る 

京都大 4次方程式 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数係数の4次方程式
$x^4+ax^3+bx^2+cx+1=0$
重複も込めた4つの解は、整数2つ虚数2つである。
$a,b,c$の値を求めよ

出典:2002年京都大学 過去問
この動画を見る 

複素数の3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+i=0$を解け.
この動画を見る 

【数Ⅱ】複素数と方程式:2x²-6x-3=0の解がα、βのとき、①β²/α+α²/β②(2α²-6α-5)(2β²-6β-1)の値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2x^2-6x-3=0$の解が$\alpha,\beta$のとき、
①$\dfrac{\beta^2}{\alpha}+\dfrac{\alpha^2}{\beta}
②$(2\alpha^2-6\alpha-5)(2\beta^2-6\beta-1)$の値を求めよ。

この動画を見る 
PAGE TOP