問題文全文(内容文):
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
チャプター:
0:00 オープニング
0:06 (1)
1:38 (2)
2:11 (3)
3:28 今回のポイント
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
投稿日:2024.03.31