正方形と円 - 質問解決D.B.(データベース)

正方形と円

問題文全文(内容文):
正方形の面積= 2023㎠
円の面積=?

*図は動画内参照
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の面積= 2023㎠
円の面積=?

*図は動画内参照
投稿日:2023.04.14

<関連動画>

出てきた答えについて考える 錦城 A

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照

2021錦城高等学校
この動画を見る 

【受験対策】数学-確率③

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①大小2つのさいころを同時に投げ、異なる目が出た場合は、出た目の数の大きい方を得点とし、2つとも同じ目が出た場合は、出た目の数の和を得点とする。
これらのさいころを1回投げたとき、得点が4点となる確率を求めよう。

② 右の図のように、点、A、B、C、D、E、F、G、Hを頂点とする 立方体があり、この頂点上を移動する2点、P,Qがある。
大小2つのさいころを同時に1回投げる。
点Pは、点Aを出発点として、大きいさいころの出た目の数だけ、→B→C→D→A→B→C の順に移動し、点Qは、点Eを出発点として、小さいさいころの出た目の数だけ、→H→G→F→E→H→Gの順に移動する。
このとき、直線PQと直線CGが、ねじれの位置にある確率を求めよう。
ただし、さいころを投げるとき、1から6までのどの目が 出ることも同様に確からしいものとする。

※図は動画内参照
この動画を見る 

福田のおもしろ数学261〜整数解を求めるにはどうすればよいか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,n$を正の整数とするとき$a^{n+1}-(a+1)^n=2000$を満たす$a,n$を求めて下さい。
この動画を見る 

茨城大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$

(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ

(2)
積$abcd$が4の倍数となる確率を求めよ

出典:2010年茨城大学 過去問
この動画を見る 

福田の数学〜中央大学2023年理工学部第1問〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ さいころを2回ふって出た目の数を順に$a$, $b$とし、複素数$\alpha$, $\beta$を
$\alpha$=$\displaystyle\cos\frac{a\pi}{3}$+$\displaystyle i\sin\frac{a\pi}{3}$, $\beta$=$\displaystyle\cos\frac{b\pi}{3}$+$\displaystyle i\sin\frac{b\pi}{3}$
と定める($i$は虚数単位)。また、$\alpha$-$\beta$の絶対値を$d$=|$\alpha$-$\beta$|とおく。
(1)$d$のとりうる値は、小さいものから順に0, $\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$, $\boxed{\ \ ウ\ \ }$である。
$d$=0, $\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$, $\boxed{\ \ ウ\ \ }$が成り立つ確率はそれぞれ$\boxed{\ \ エ\ \ }$, $\boxed{\ \ オ\ \ }$, $\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$である。
(2)$\alpha$-$\beta$が実数となる確率は$\boxed{\ \ ク\ \ }$であり、$\alpha$-$\beta$が実数という条件の下で$d$<$\boxed{\ \ ウ\ \ }$が成り立つ条件付き確率は$\boxed{\ \ ケ\ \ }$である。
(3)$\alpha^2$=$\beta^3$という条件の下で$\alpha+\beta$の虚部が正となる条件付き確率は$\boxed{\ \ コ\ \ }$である。
この動画を見る 
PAGE TOP