これの説明できますか? - 質問解決D.B.(データベース)

これの説明できますか?

問題文全文(内容文):
1-1-+1-1-+1-1...
解説動画です
単元: #数列#漸化式#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1-1-+1-1-+1-1...
解説動画です
投稿日:2022.04.18

<関連動画>

秋田大(医)数列の和 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
$n$人のクラス(ただし$n \gt 1$)で英語と理科のテストを実施する。ただしどちらの科目にも同順位の者はいないとする。出席番号$i(i=1,2,\ldots,n)$の生徒について、その英語の順位$x$と理科の順位$y$の組を$(x_i,y_i)$で表す。
(1)変量$x$の平均値$\bar{ x }$と分散$s_x^2$をそれぞれ求めると$\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ }$である。
(2)変量$x,y$の共分散$s_{xy}$とする。クラスの人数$n$が奇数の2倍であるとき、$s_{xy}\neq 0$であることを示しなさい。
(3)$i=1,2,\ldots,n$に対して$d_i=x_i-y_i$とおく。変量$x,y$の相関係数を$r$とするとき、$r$は$n$と$d_1,d_2,\ldots,d_n$を用いて$r=1-\dfrac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ }$と表される。
(4)$x_i$と$y_i$の間に$y_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)$の関係があるとき$r$は最大値$\boxed{\ \ (か)\ \ }$をとり$y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)$の関係があるとき$r$は最小値$\boxed{\ \ (く)\ \ }$をとる。

2021慶應義塾大学医学部過去問
この動画を見る 

あれですよ、あれ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{1!+2!+3!}+ \dfrac{4}{2!+3!+4!}+\dfrac{5}{3!+4!+5!}+$
$・・・・・・+\dfrac{2022}{2020!+2021!+2022!}$
これを解け.
この動画を見る 

17愛知県教員採用試験(数学:6番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
6⃣$2na_n=\displaystyle \sum_{k=1}^n k a_k+n$
$a_n$を求めよ。
この動画を見る 

15三重県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=2,b_1=4$,
$a_{n+1}=3a_n+2b_n$
$b_{n+1}=4a_n+5b_n$
一般項$a_n,b_n$を求めよ.
この動画を見る 
PAGE TOP