解き方無限大 高校入試 図形 円 - 質問解決D.B.(データベース)

解き方無限大 高校入試 図形 円

問題文全文(内容文):
CD=?
*図は動画内参照
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
CD=?
*図は動画内参照
投稿日:2021.05.31

<関連動画>

無題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
この動画を見る 

芝浦工大 1の4n+1乗根

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$z^{4n+1}=1$の相異なる解を$1,\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}$とする.
$\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}=\Box$
$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$
$\Box$を求めよ.

芝浦工大過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(3)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3) 等式 $30x-23y=1$を満たす正の整数の組(x, y) のうち、$x+y$ が最小となる
ものは[キ]である。
$A={n|n$ は 600 以下の正の整数であり、30の倍数である}
$B={n|n$ は 600 以下の正の整数であり、 n を 23 で割ると4余る}
とおく。このとき、 AUBに属する正の整数の総和は[ク]である。
また、m を正の整数とし、 $∨m^2 +120$ は整数であるとすると、mのとり得る値は[ヶ],[コ],[サ],[シ]である。

2022北里大学医学部過去問
この動画を見る 

297 ユークリッドの互除法1:引き算だけを使って最大公約数を求めよう! #shorts

アイキャッチ画像
単元: #数A#情報Ⅰ(高校生)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#プログラミング#プログラムによる動的シミュレーション
指導講師: めいちゃんねる
問題文全文(内容文):
297 ユークリッドの互除法1:引き算だけを使って最大公約数を求めよう! #shorts
【問題文】
このプログラムは次の3つの性質を使って最大公約数を求めるものである。
性質1)xとyの値が等しいとき、xとyの最大公約数はxである。
性質2)xがyより大きいとき、xとyの最大公約数は(x - y)とyの最大公約数に等しい。
性質3)xがyより小さいとき、xとyの最大公約数はxと(y - x)の最大公約数に等しい。
空欄に入る最も適切なものを選べ。
※プログラムは動画内参照
この動画を見る 

【高校数学】 数A-51 方べきの定理①

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
点Pを通る2直線が,円$O$とそれそれ 2点$A,B$と
2点$C,D$で交わるとき,$①=①$が成り立つ.

点$P$を通る2直線の一方が,
円$O$と2点$A,B$で交わり,もう一方が点$T$で接するとき,
$②=②$が成り立つ.

下の図で$x$を求めよう.
ただし,$T$は接点とする.





図は動画内参照
この動画を見る 
PAGE TOP