解き方無限大 高校入試 図形 円 - 質問解決D.B.(データベース)

解き方無限大 高校入試 図形 円

問題文全文(内容文):
CD=?
*図は動画内参照
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
CD=?
*図は動画内参照
投稿日:2021.05.31

<関連動画>

トランプシャッフルして,元に戻る確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
トランプを適当にシャッフルしてA~Kまで52枚全部順番で揃う確率はどのくらいですか?
この動画を見る 

円錐に内接する立方体 智弁和歌山(改) B

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#立体図形#立体図形その他#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円錐の底面の半径は?
*図は動画内参照

2021智辯学園和歌山高等学校(改)
この動画を見る 

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

福田のわかった数学〜高校1年生072〜場合の数(11)組み分け

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#センター試験#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
点$O$を原点とする座標空間に2点
$A(3, 3, -6),$ $B(2+2\sqrt3,$ $2-2\sqrt3, -4)$
をとる。3点$O,A,B$の定める平面を$\alpha$とする。また、$\alpha$に含まれる点$C$は

$\overrightarrow{ OA } \bot \overrightarrow{ OC },$ $\overrightarrow{ OB }・\overrightarrow{ OC }=24$ $\cdots$①

を満たすとする。

(1) $|\overrightarrow{ OA }|=\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }},$ $|\overrightarrow{ OB }|=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$であり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ オカ\ \ }$である。

(2)点$C$は平面$\alpha$上にあるので、実数$s,$ $t$を用いて、$\overrightarrow{ OC }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$と
表すことができる。このとき、①から$s=\displaystyle \frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $t=\boxed{\ \ コ\ \ }$である。
したがって、$|\overrightarrow{ OC }|=\boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}$である。

(3)$\overrightarrow{ CB }=\left(\boxed{\ \ ス\ \ }, \boxed{\ \ セ\ \ }, \boxed{\ \ ソタ\ \ }\right)$である。したがって、平面$\alpha$上の
四角形$OABC$は$\boxed{\ \ チ\ \ }$。
$\boxed{\ \ チ\ \ }$に当てはまるものを、次の⓪~④のうちから一つ選べ。
ただし、少なくとも一組の対辺が平行な四角形を台形という。

⓪正方形である
①正方形ではないが、長方形である
②長方形ではないが、平行四辺形である
③平行四辺形ではないが、台形である
④台形ではない

$\overrightarrow{ OA } \bot \overrightarrow{ OC }$であるので、四角形$OABC$の面積は$\boxed{\ \ ツテ\ \ }$である。

(4)$\overrightarrow{ OA } \bot \overrightarrow{ OD },$ $\overrightarrow{ OC }・\overrightarrow{ OD }=2\sqrt6$かつ$z$座標が1であるような点$D$の座標は
$\left(\boxed{\ \ ト\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}, \boxed{\ \ ヌ\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ネ\ \ }}}{\boxed{\ \ ノ\ \ }}, 1\right)$
である。このとき$\angle COD=\boxed{\ \ ハヒ\ \ }°$である。
3点$O,C,D$の定める平面を$\beta$とする。$\alpha$と$\beta$は垂直であるので、三角形
$ABC$を底面とする四面体$DABC$の高さは$\sqrt{\boxed{\ \ フ\ \ }}$である。したがって、
四面体$DABC$の体積は$\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$ である。

2020センター試験過去問
この動画を見る 
PAGE TOP