最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題 - 質問解決D.B.(データベース)

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

問題文全文(内容文):
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=$$\displaystyle \frac{n+3}{n+1}\{3a_n+3^{n+1}-$$(n+1)(n+2)\}$ $\cdots$①

(1)$a_2=\boxed{\ \ ア\ \ }$ である。

(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n$$+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$

を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。

したがって

$b_{n+1}-b_n=$$\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。

$n$を2以上の自然数とするとき

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)$$=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=$$\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が成り立つことを利用すると

$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}$$+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が得られる。これは$n=1$のときも成り立つ。

(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+$$\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$

で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。

(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。

2020センター試験過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=$$\displaystyle \frac{n+3}{n+1}\{3a_n+3^{n+1}-$$(n+1)(n+2)\}$ $\cdots$①

(1)$a_2=\boxed{\ \ ア\ \ }$ である。

(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n$$+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$

を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。

したがって

$b_{n+1}-b_n=$$\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。

$n$を2以上の自然数とするとき

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)$$=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=$$\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が成り立つことを利用すると

$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}$$+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が得られる。これは$n=1$のときも成り立つ。

(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+$$\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$

で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。

(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。

2020センター試験過去問
投稿日:2020.01.21

<関連動画>

慶應女子高 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8616$と$5844$を同じ自然数$n$で割ったら,割り切れずその余りが同じ$n$の最大値と
最小値を求めよ.

慶応女子過去問
この動画を見る 

早稲田大 ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$は実数であり,$n$は自然数である.
①$\left[\dfrac{1}{2}x\right]-\left[\dfrac{1}{2}[x]\right]=0$示せ.
②$\left[\dfrac{1}{n}x\right]-\left[\dfrac{1}{n}[x]\right]=0$を求めよ.

2009早稲田大過去問
この動画を見る 

ピタゴラス数、三平方の定理、整数解の求め方、質問への返答

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ピタゴラス数,三平方の定理,整数解の求め方,質問への回答に関して解説していきます.
この動画を見る 

ただの分数式だけど

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
この動画を見る 

息抜き整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!+8=2^k$
自然数$(n,k)$をすべて求めよ.
この動画を見る 
PAGE TOP