有名問題だよ(多分) - 質問解決D.B.(データベース)

有名問題だよ(多分)

問題文全文(内容文):
$\sqrt[n]{n}$が最大となる自然数$n$を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[n]{n}$が最大となる自然数$n$を求めよ.
投稿日:2021.06.19

<関連動画>

合同式の基本 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1\times 3\times 5\times 7\times・・・・・・\times 999$を$16$で割った余りを求めよ.
この動画を見る 

3乗根のはずし方 類題 一橋大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$

(1)
$\alpha+\beta$

(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)

出典:一橋大学 過去問
この動画を見る 

札幌医科大学2021 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$に対し$N=(n+2)^3-n(n+1)(n+2)$が$36$の倍数になるような$n$をすべて求めよ.

2021札幌医大過去問
この動画を見る 

大学入試問題#795「ガウス記号入れて、採点楽にしたいのか!?」 #富山大学(2022) #ガウス記号

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: ますただ
問題文全文(内容文):
実数$x$に対して、$x$を超えない最大の整数を$[x]$で表す。
次の値を求めよ。
$[\sqrt{ \sqrt[ 3 ]{ 3 }+\displaystyle \frac{2}{\sqrt[ 3 ]{ 3 }-1} }]$

出典:2022年富山大学 入試問題
この動画を見る 

素数製造マシーン 素数とならないものを答えよ 洛星(改)

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$p=n^2+n+41$
100以下の自然数nのうちpが素数とならないものを2つ答えよ

洛星高等学校(改)
この動画を見る 
PAGE TOP