福田の数学〜一橋大学2025文系第3問〜定積分で表された方程式の解の個数 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2025文系第3問〜定積分で表された方程式の解の個数

問題文全文(内容文):

$\boxed{3}$

等式

$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$

が成り立つ実数$a$がちょうど$4$つ存在するような

実数$k$の範囲を求めよ。

$2025$年一橋大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

等式

$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$

が成り立つ実数$a$がちょうど$4$つ存在するような

実数$k$の範囲を求めよ。

$2025$年一橋大学文系過去問題
投稿日:2025.05.07

<関連動画>

福田のおもしろ数学518〜積分で表された関数の導関数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\displaystyle \int_{0}^{1} f(x-t)dt$

の導関数を求めよ。
    
この動画を見る 

【数Ⅱ】【微分法と積分法】偶関数と奇関数の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1)$\int_{-1}^1(4x³+3x²+3x+1)dx$
(2)$\int_{-2}^2(x³-x²-x+4)dx$
(3)$\int_{-2}^2(x⁴-5x³+x²+9x)dx $
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第2問〜定積分と極限とグラフ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
医療で使われる技術の1つとして、磁気共鳴画像法 (MRI) がある。
MRI は画像の濃淡を表す関数、例えば

$M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ (xは実数)

を用いて体内の様子を可視化する技術である。 ここで $I_n(x) $ は

$I_n(x) = \displaystyle \int_0^n e^{ -t }cos(tx)dt $
(n=1, 2, 3, ...)である。以下の問いに答えよ。

(1) 定積分$I_n(x) $を求めよ。

(2) $M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ を求めよ

2023浜松医科大学医過去問


(3) 関数 $y= M(x)$ について、増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
この動画を見る 

なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか?解説していきます.
この動画を見る 

#筑波大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} (5\cos^2\theta-3\sin^2\theta)d\theta$

出典:2019年筑波大学
この動画を見る 
PAGE TOP