問題文全文(内容文):
$\boxed{3}$
等式
$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$
が成り立つ実数$a$がちょうど$4$つ存在するような
実数$k$の範囲を求めよ。
$2025$年一橋大学文系過去問題
$\boxed{3}$
等式
$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$
が成り立つ実数$a$がちょうど$4$つ存在するような
実数$k$の範囲を求めよ。
$2025$年一橋大学文系過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
等式
$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$
が成り立つ実数$a$がちょうど$4$つ存在するような
実数$k$の範囲を求めよ。
$2025$年一橋大学文系過去問題
$\boxed{3}$
等式
$6\displaystyle \int_{0}^{2} \vert x^2-a \vert dx-a^2-2a+k$
が成り立つ実数$a$がちょうど$4$つ存在するような
実数$k$の範囲を求めよ。
$2025$年一橋大学文系過去問題
投稿日:2025.05.07





