大学入試問題#39 東海大学医学部(2021) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#39 東海大学医学部(2021) 整数問題

問題文全文(内容文):
$n:$自然数
$n^3+100$が$n+10$で割り切れるような最大の$n$の値を求めよ。

出典:2021年東海大学医学部 入試問題
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$n:$自然数
$n^3+100$が$n+10$で割り切れるような最大の$n$の値を求めよ。

出典:2021年東海大学医学部 入試問題
投稿日:2021.11.01

<関連動画>

整数問題の難問!感覚が大事になる問題です

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6・3^3x +1=7・5^2xを満たす0以上の整数xを求めよ。
この動画を見る 

【題意をつかもう!数学の意味を知ろう!】整数:沖縄県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
「ある2桁の自然数$X$と,その数の十の位の数と一の位の数を入れ替えてできる数$Y$との和が$132$になる.」
もとの自然数$X$として考えられる数をすべて求めなさい.
※もとの自然数$X$は,十の位の数が一の位の数より大きいものとする.

沖縄県高校過去問
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る 

兵庫県立大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
正整数$a$と正の奇数
$p,q$が$2^a+p^2=q^4$を満たしている。

(1)
$q^2-p=2$を証明せよ。

(2)
$q$を全て求めよ。


出典:兵庫県立大学 過去問
この動画を見る 

千葉大 素数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の自然数

(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ

(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ

出典:2007年千葉大学 過去問
この動画を見る 
PAGE TOP