問題文全文(内容文):
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
投稿日:2017.04.18





