福田の数学〜東京大学2023年理系第3問〜円と放物線と切り取られる弦の長さ - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第3問〜円と放物線と切り取られる弦の長さ

問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、座標平面上の点(0,a)を中心とする半径1の円の周をCとする。
(1)Cが不等式$y>x^2$の表す領域に含まれるようなaの範囲を求めよ。
(2)aは(1)で求めた範囲にあるとする。Cのうちx≧0かつy<aを満たす部分をSとする。S上の点Pに対し、点PでのCの接線が放物線$y=x^2$によって切り取られてできる線分の長さを$L_P$とする。$L_Q$=$L_R$となるS上の相異なる2点Q, Rが存在するようなaの範囲を求めよ。

2023東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、座標平面上の点(0,a)を中心とする半径1の円の周をCとする。
(1)Cが不等式$y>x^2$の表す領域に含まれるようなaの範囲を求めよ。
(2)aは(1)で求めた範囲にあるとする。Cのうちx≧0かつy<aを満たす部分をSとする。S上の点Pに対し、点PでのCの接線が放物線$y=x^2$によって切り取られてできる線分の長さを$L_P$とする。$L_Q$=$L_R$となるS上の相異なる2点Q, Rが存在するようなaの範囲を求めよ。

2023東京大学理系過去問
投稿日:2023.03.03

<関連動画>

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田のわかった数学〜高校2年生025〜2つの円の位置関係

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の位置関係
円$C_1:x^2+y^2=1$
円$C_2:x^2+y^2-6x+8y+k=0$
が接するとき、定数$k$の値と接点の座標を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題099〜早稲田大学2020年度社会科学部第3問〜複数の円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の5つの点$P_1$($-\sqrt 5$, 0), $P_2$($-\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_3$(0, 0), $P_4$($\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_5$($\sqrt 5$, 0)をそれぞれ中心とする半径1の円を$C_1$, $C_2$, $C_3$, $C_4$, $C_5$とする。次の問に答えよ。
(1)1つ以上の円に囲まれる領域の面積を求めよ。
(2)2つ以上の円と接する直線の本数を求めよ。
(3)3つ以上の円と外接する円の半径をすべて求めよ。

2020早稲田大学社会科学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(1)基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
この動画を見る 
PAGE TOP