千葉大 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

千葉大 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2004千葉大学過去問題
x,y自然数、pは素数
$p^2=x^3+y^3$となる
(p,x,y)をすべて求めよ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2004千葉大学過去問題
x,y自然数、pは素数
$p^2=x^3+y^3$となる
(p,x,y)をすべて求めよ。
投稿日:2018.07.12

<関連動画>

ざ・算数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ A=\underbrace{111……11}_{2007桁},A×2007$の各位の和を求めよ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数である.
$8^{q-1}-1=pq^2$の$(p,q)$を求めよ.
この動画を見る 

【高校数学】京大の整数問題!どう解く?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pを3以上の素数とする。4個の整数a,b,c,dが次の3条件
a+b+c+d=0
ad-bc-+p=0
a≧b≧c≧d
を満たすとき、a,b,c,dをpで表せ。
この動画を見る 

整数、素数、京都大学入試問題 数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qともに素数
$p^q+q^p$が素数となるp,qをすべて求めよ

京大過去問
この動画を見る 

防衛医大 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛医科大学校過去問題
$a^2+b^2+c^2$ a,b,c自然数
a,b,cのいずれかは5の倍数であることを示せ。

*旭川医科大学
(1)c奇数
(2)a,b1つは3の倍数
(3)a,b1つは4の倍数
この動画を見る 
PAGE TOP