【高校数学】 数Ⅱ-153 関数の極値③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-153 関数の極値③

問題文全文(内容文):
◎次の関数の極値を求めて、そのグラフをかこう。

①$y=3x^4-4x^3-12x^2$

②$y=x^4+2x^3+1$
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の極値を求めて、そのグラフをかこう。

①$y=3x^4-4x^3-12x^2$

②$y=x^4+2x^3+1$
投稿日:2015.10.12

<関連動画>

福田の数学〜東北大学2025理系第5問〜球面上の点と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする

半径$1$の球面とする。

また、点$P(a,b,c)$を

点$(0,0,1)$とは異なる球面$S$上の点とする。

点$P$と点$N$を通る直線$\ell$と$xy$平面との

交点を$Q$とおく。

このとき、以下の問いに答えよ。

(1)点$Q$の座標を$a,b,c$を用いて表せ。

(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を

$m$とする。

直線$m$と球面$S$の交点のうち、

点$N$以外の交点の座標を$p,q$を用いて表せ。

(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、

ベクトル$(3,4,5)$に直交する

平面$\alpha$を考える。

点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、

点$Q$は$xy$平面上の円周上を動くことを示せ。

$2025$年東北大学理系過去問題
この動画を見る 

大阪大 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$

(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.

2006大阪大過去問
この動画を見る 

福田のおもしろ数学048〜10秒チャレンジ〜大小比較

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^{55},3^{44},4^{33},5^{22}$を小さい順に並べなさい。
この動画を見る 

【n進法】同じ桁数になるようなもの?【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
この動画を見る 

共有点の個数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
aは定数。放物線$y=x^2+a$と$y=4|x-1|-3$のグラフとの共有点の個数を求めよ。
この動画を見る 
PAGE TOP