【数学】確率の求め方間違っていませんか?確率の前提の話 前編 - 質問解決D.B.(データベース)

【数学】確率の求め方間違っていませんか?確率の前提の話 前編

問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
チャプター:

0:00 OP
0:06 本編
2:40 ED

単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
投稿日:2023.02.08

<関連動画>

昭和薬科大 確率基礎

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~9のカード各1枚入った箱から1枚取り出して記録して戻す.
$n$回の合計が奇数となる確率を求めよ.

2021昭和薬科過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題037〜慶應義塾大学2019年度医学部第1問(2)〜積事象と和事象の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)赤玉1個、白玉2個、黒玉3個が入った袋が1つある。はじめにK君が
この袋から同時に2個の玉を取り出す。次にK君が取り出した玉をもとに
戻さずに、O君が袋から同時に2個の玉を取り出す。この試行において
「K君が取り出した2個の玉が同じ色である」という事象をA,
「O君が取り出した2個の玉が同じ色である」という事象をB,
とする。このとき、AとBの積事象$A \cap B$の確率は$\boxed{(う)}$であり、
和事象$A \cup B$の確率は$\boxed{(え)}$である。

2019慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校1年生072〜場合の数(11)組み分け

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る 

頑張れば小中学生にもできる 東大入試問題 数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3人でジャンケン
負けた人は以後参加できない。
k回目に1人の勝者が決まる確率を求めよ.

東大過去問
この動画を見る 

福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(11) 反復試行(5)\\
格子点上を次の規則で点\textrm{P}が動く。\\
(\textrm{a})最初、点\textrm{P}は原点にある。\\
(\textrm{b})ある時刻で点\textrm{P}が(m,n)にあるとき、その1秒後の点\textrm{P}の位置は等確率で\\
(m+1,n), (m,n+1), (m,n-1), (m-1,n)である。\\
6秒後に点\textrm{P}が直線y=x上にある確率を求めよ。
\end{eqnarray}

東京大学過去問
この動画を見る 
PAGE TOP