福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}

2022東京工業大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}

2022東京工業大学理系過去問
投稿日:2022.03.31

<関連動画>

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 

またやるの!π>3 05証明 驚愕の解法

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\pi \gt 3.05$を証明せよ.

2003東大過去問
この動画を見る 

秋田大(医) 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,A,Bを整数とする.
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるA,Bの値を求めよ.

秋田大(医)過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)(\textrm{i})不等式\\
\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}\\
を満たす自然数kは\ \boxed{\ \ ス\ \ }\ である。\\
(\textrm{ii})7^{35}は\ \boxed{\ \ セ\ \ }\ 桁の整数である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)連立不等式x \geqq 2, 2^x \leqq x^y \leqq x^2の表す領域をxy平面上に図示せよ。\\
ただし、自然対数の底eが2 \lt e \lt 3を満たすことを用いてよい。\\
(2)a \gt 0に対して、連立不等式2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0\\
の表すxy平面上の領域の面積をS(a)とする。\\
S(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 
PAGE TOP