例のアレ - 質問解決D.B.(データベース)

例のアレ

問題文全文(内容文):
$\displaystyle \frac{1}{1×2×3×4}+\displaystyle \frac{1}{2×3×4×5}+\displaystyle \frac{1}{3×4×5×6}$$+…+\displaystyle \frac{1}{6×7×8×9}+\displaystyle \frac{1}{7×8×9×10}$
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{1×2×3×4}+\displaystyle \frac{1}{2×3×4×5}+\displaystyle \frac{1}{3×4×5×6}$$+…+\displaystyle \frac{1}{6×7×8×9}+\displaystyle \frac{1}{7×8×9×10}$
投稿日:2023.12.05

<関連動画>

福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}} $
1辺の長さが$1$の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さが1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して次の問いに答えよ。
(1)1辺の長さが1の正三角形を$5$段積んだとき、上向きと下向きとを合わせた正三角形の総数を求めよ。
(2)1辺の長さが1の正三角形を$n$段(ただし$n$は自然数)積んだとき、上向きの正三角形の総数を求めよ。
(3)1辺の長さが1の正三角形を$n$段(ただし$n$は自然数)積んだとき、下向きの正三角形の総数を求めよ。
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

開成中学 整数 等差数列の和

アイキャッチ画像
単元: #算数(中学受験)#数列#数列とその和(等差・等比・階差・Σ)#過去問解説(学校別)#数学(高校生)#数B#開成中学
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$

(1)
$7^2$

(2)
$10^2$

(3)
$30^2$は何通りあるか

出典:2018年開成中学校 過去問
この動画を見る 

【数学B】群数列を【3分】でマスターする動画(共通テスト対策)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】群数列の解説動画(共通テスト対策)
この動画を見る 

【高校数学】 数B-61 等差数列とその和④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公差$d$,末項$\ell$,項数$n$の等差数列の和を$S_n$とすると
$S_n=①=②$

次の等差数列の和を求めよう.

③初項-10,末項45,項数8

④初項64,公差-5,項数16

⑤$20,14,・・・-58$
この動画を見る 
PAGE TOP