札幌医科大学2021 整数問題 - 質問解決D.B.(データベース)

札幌医科大学2021 整数問題

問題文全文(内容文):
自然数$n$に対し$N=(n+2)^3-n(n+1)(n+2)$が$36$の倍数になるような$n$をすべて求めよ.

2021札幌医大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$に対し$N=(n+2)^3-n(n+1)(n+2)$が$36$の倍数になるような$n$をすべて求めよ.

2021札幌医大過去問
投稿日:2021.03.17

<関連動画>

大学入試問題#248 慶應義塾大学(2014) #方程式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z:0$でない整数
$\displaystyle \frac{1}{xy}+\displaystyle \frac{1}{yz}+\displaystyle \frac{1}{zx}=\displaystyle \frac{1}{xy+yz+zx}$
$2^{x+1}=\displaystyle \frac{5^{2y}}{10^{z+1}}$
をみたすとき$x,y,z$の値を求めよ。

出典:2014年慶應義塾大学 入試問題
この動画を見る 

数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数

(1)
$n^2$と$2n+1$は互いに素、示せ

(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ

出典:1992年一橋大学 過去問
この動画を見る 

#39 数検1級1次 過去問 解と係数の関係 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n:$正の整数
$x^3-mx^2+nx-n=0$のすべての解が正の整数であるような組$(m,n)$を求めよ。
この動画を見る 

素数にならないのはなぜ? 洛星

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
この動画を見る 
PAGE TOP