数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数 - 質問解決D.B.(データベース)

数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数

問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
投稿日:2018.09.23

<関連動画>

福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る 

整数問題 筑波大附属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
4ケタの数字3,4,5,6を並べ替えてできる4ケタの数をmとし、mの各位の数を逆順に並べてできる数をnとするとm+nは必ずpの倍数となる。
(ただしpは考えられる最大の整数)
p=?

筑波大学附属高等学校
この動画を見る 

息抜き整数問題 n^7-nは42の倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^7-n$は42の倍数であることを示せ(n自然数)
この動画を見る 

立教大のナイスな問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023立教大学過去問題
$A=\frac{10^{40}-3^{10}}{9997}$,$B=\frac{10^{36}-3^{9}}{9997}$
①Aの1の位の数
②A-3Bを素因数分解
③AとBの最大公約数
この動画を見る 

群馬大(医)

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ

出典:群馬大学医学部 過去問
この動画を見る 
PAGE TOP